Skip to main content
Log in

Modern sedimentation system of Lake Untersee, East Antarctica

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The paper presents data on the geographic and geological conditions of modern sedimentation in Lake Untersee, the largest lake in East Antarctica. Geochemical and sedimentation data indicate that the leading mechanism providing Al-Si sedimentary material to the surface layer of the bottom sediments is the seasonal melting of the Anuchin glacier and the mountain glacier on the southeastern face of the valley hosting the lake. The strongly reduced conditions in the lowermost 25 m of the water column in the smaller of the two depressions at the lake bottom were favorable for the enrichment of the bottom sediments in bacteriogenic organic matter, Mo, Au, and Pd. The H2S-contaminated water facilitates the significant enrichment of the sediments only in redox-sensitive elements able to migrate in the form of anionic complexes and precipitate (coprecipitate) as sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Loopman, E. Kaup, V. Klokov, I. Simonov, and D. Haendel, “The Bathymetry of Some Lakes of the Antarctic Oases Schirmacher and Untersee,” in Limnological Studies in Queen Maud Land (East Antarctic), Ed. by J. Martin (Valgus, Tallinn, 1988), pp. 6–14.

    Google Scholar 

  2. U. Wand, V. A. Samarkin, H.-M. Nitzsche, and H.-W. Hubberten, “Biogeochemistry of Methane in the Permanently Ice-Covered Lake Untersee, Central Dronning Maud Land, East Antarctica,” Limnol. Oceanogr. 51(2), 1180–1194 (2006).

    Article  Google Scholar 

  3. http: // www.tawanifoundation.org/

  4. The Schirmacher Oasis, Queen Maud Land, East Antarctica, and Its Surroundings, Ed. by P. Bormann and D. Fritzsche (Justus Perthes Verlag, Gotha, 1995).

    Google Scholar 

  5. M. J. Schwab, “Rekonstruktion der Spatquartaren Klima- und Umweltgeschichte der Schirmacher Oase und des Wohltnat Massivs (Ostantarktika),” Ber. Polarforschung, No. 293, (1998).

  6. Ch. McCay, Oral Communication, 2009.

  7. U. Wand and J. Perlt, “Glacial Boulders “Floating” on the Ice Cover of Lake Untersee, East Antarctica,” Antarct. Sci. 11, 256–260 (1999).

    Article  Google Scholar 

  8. M. G. Ravich and D. S. Solov’ev, Geology and Petrology of the Central Part of the Queen Maud Land (East Antarctica) (Nedra, Leningrad, 1966) [in Russian].

    Google Scholar 

  9. A. Hiller, U. Wand, H. Kämpf, and W. Stackebrandt, “Occupation of the Antarctic Continent by Petrels during the Past 35000 Years: Inferences from a 14C Study of Stomach Oil Deposits,” Polar Biol. 9, 69–77 (1988).

    Article  Google Scholar 

  10. E. Kaup, A. Loopman, V. Klokov, I. Simonov, and D. Haendel, “Limnological Investigations in the Untersee Oasis (Queen Maud Land, East Antarctica), in Limnological Studies in Queen Maud Land (East Antarctica),” (Valgus, Tallinn, 1988), pp. 28–42.

    Google Scholar 

  11. U. Wand, G. Schwarz, E. Brüggemann, and K. Bäner, “Evidence for Physical and Chemical Stratification in Lake Untersee (Central Dronning Maud Land, East Antarctica),” Antarct. Sci. 9, 43–45 (1997).

    Article  Google Scholar 

  12. J. C. Priscu and C. M. Foreman, “Lakes of Antarctica,” in Encyclopedia of Inland Waters, Ed. by G. E. Likens (Elsevier, Oxford, 2009), vol. 2, pp. 555–566.

    Chapter  Google Scholar 

  13. I. Hawes. Oral Communication, 2009.

  14. O. A. Tyutyunnik, D. N. Chkhetija, M. L. Getsina, et al., “Microelement Composition of Boundary Cenomanian-Turonian Sediments of Crimea Mountains and North-Western Caucasus,” Eur. J. Analyt. Chem. 3, 91–112 (2008).

    Google Scholar 

  15. M. A. Levitan, I. A. Roshchina, and A. V. Tolmacheva, “Geochemical Features of Sediments on the Continental Slope of the Weddell Sea and Their Paleoceanographic Interpretation,” Litol. Polezn. Iskop., No. 2, 128–142 (2008) [Lithol. Miner. Res. 43, 111–124 (2008)].

  16. P. E. Biscaye, “Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans,” Geol. Soc. Am. Bull. 76, 803–832 (1965).

    Article  Google Scholar 

  17. N. Hultzsch, “Lakustrine Sedimente als Archive des Spätquartären Umweltwandels in der Amery-Oase, Ostantarktis,” Ber. Polarforschung, No. 545, 185 (2007).

  18. R. Hoover, Personal Communication, 2009.

  19. M. A. Levitan, D. Nürnberg, R. Stein, et al., “Role of Cryosols in the Accumulation of Modern Bottom Sediments in the Arctic Ocean,” Dokl. Akad. Nauk 344(4), 506–509 (1995).

    Google Scholar 

  20. V. G. Shlykov, X-Ray Analysis of Mineral Composition of Dispersed Grounds (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  21. V. A. Drits and A. G. Kossovskaya, Clay Minerals: Micas and Chlorites, Tr. Geol. Inst. Akad. Nauk SSSR, (Nauka, Moscow, 1991), vol. 465 [in Russian].

    Google Scholar 

  22. Anorthosite: Average Chemical Composition (Gosstandart, Moscow, 1987) [in Russian].

  23. Ya. E. Yudovich and M. P. Ketris, Principles of Lithochemistry (Nauka, St. Petersburg, 2000) [in Russian].

    Google Scholar 

  24. Yu. A. Balashov, Geochemistry of Rare Earth Elements (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  25. F. P. Lesnov, Rare-Earth Elements in the Ultramafic and Mafic Rocks and their Minerals. Book 1. Main Rock Types. Rock-Forming Minerals (“Geo”, Novosibirsk, 2007) [in Russian].

    Google Scholar 

  26. G. M. Varshal, T. K. Velyukhanova, I. Ya. Koshcheeva, et al., “Studying of Chemical Speciation of Elements in Surface Waters,” Zh. Anal. Khim. 38(9), 1590–1600 (1983).

    Google Scholar 

  27. A. Usher, D. C. McPhail, and J. Brugger, “A Spectrophotometric Study of Aqueous Au(III) Halide-Hydroxide Complexes at 25–80°C,” Geochim. Cosmochim. Acta 73, 3359–3380 (2009).

    Article  Google Scholar 

  28. I. V. Kubrakova, G. M. Varshal, Yu. F. Pogrebnyak, and T. F. Kudinova, “Pt and Pd Migration Species in Natural Waters,” in Chemical Analysis of Marine Sediments (Nauka, Moscow, 1988), pp. 104–119 [in Russian].

    Google Scholar 

  29. V. G. Moiseenko, “Problems of Gold Nanogeochemistry,” in Gold Nanogeochemistry (Dal’nauka, Vladivostok, 2008), pp. 6–30 [in Russian].

    Google Scholar 

  30. B. R. Ginn and J. B. Fein, “The Effect of Species Diversity on Metal Adsorption Onto Bacteria,” Geochim. Cosmochim. Acta 72, 3939–3948 (2008).

    Article  Google Scholar 

  31. Ya. E. Yudovich and M. P. Ketris, Trace Elements in Black Shales (UIF Nauka, Yekaterinburg, 1994) [in Russian].

    Google Scholar 

  32. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985; Mir, Moscow, 1988).

    Google Scholar 

  33. F. P. Shepard, “Nomenclature Based on Sand-Silt-Clay Ratios,” J. Sediment. Petrol 34, 151–158 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Levitan.

Additional information

Original Russian Text © M.A. Levitan, Yu.P. Girin, V.L. Luksha, I.V. Kubrakova, I.A. Roshchina, B. Sattler, O.A. Tyutyunnik, M.Yu. Chudetskii, 2011, published in Geokhimiya, 2011, Vol. 49, No. 5, pp. 483–505.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levitan, M.A., Girin, Y.P., Luksha, V.L. et al. Modern sedimentation system of Lake Untersee, East Antarctica. Geochem. Int. 49, 459–481 (2011). https://doi.org/10.1134/S0016702911050077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911050077

Keywords

Navigation